Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 8, 2026
-
Free, publicly-accessible full text available July 1, 2026
-
In this paper, we provide a theoretical analysis for a preconditioned steepest descent (PSD) iterative solver that improves the computational time of a finite difference numerical scheme for the Cahn-Hilliard equation with Flory-Huggins energy potential. In the numerical design, a convex splitting approach is applied to the chemical potential such that the logarithmic and the surface diffusion terms are treated implicitly while the expansive concave term is treated with an explicit update. The nonlinear and singular nature of the logarithmic energy potential makes the numerical implementation very challenging. However, the positivity-preserving property for the logarithmic arguments, unconditional energy stability, and optimal rate error estimates have been established in a recent work and it has been shown that successful solvers ensure a similar positivity-preserving property at each iteration stage. Therefore, in this work, we will show that the PSD solver ensures a positivity-preserving property at each iteration stage. The PSD solver consists of first computing a search direction (which requires solving a constant-coefficient Poisson-like equation) and then takes a one-parameter optimization step over the search direction in which the Newton iteration becomes very powerful. A theoretical analysis is applied to the PSD iteration solver and a geometric convergence rate is proved for the iteration. In particular, the strict separation property of the numerical solution, which indicates a uniform distance between the numerical solution and the singular limit values of ±1 for the phase variable, plays an essential role in the iteration convergence analysis. A few numerical results are presented to demonstrate the robustness and efficiency of the PSD solver.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available April 30, 2026
-
Free, publicly-accessible full text available October 1, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
Free, publicly-accessible full text available June 3, 2026
-
In this paper, we provide a detailed theoretical analysis of the numerical scheme introduced in [C. Liu, C. Wang, and Y. Wang, J. Comput. Phys., 436:110253, 2021] for the reaction kinetics of a class of chemical reaction networks that satisfies detailed balance condition. In contrast to conventional numerical approximations, which are typically constructed based on ordinary differential equations (ODEs) for the concentrations of all involved species, the scheme is developed using the equations of reaction trajectories, which can be viewed as a generalized gradient flow of a physically relevant free energy. The unique solvability, positivity-preserving, and energy-stable properties are proved for the general case involving multiple reactions, under a mild condition on the stoichiometric matrix.more » « less
An official website of the United States government
